The role of histone tails in the nucleosome: a computational study.

نویسندگان

  • Jochen Erler
  • Ruihan Zhang
  • Loukas Petridis
  • Xiaolin Cheng
  • Jeremy C Smith
  • Jörg Langowski
چکیده

Histone tails play an important role in gene transcription and expression. We present here a systematic computational study of the role of histone tails in the nucleosome, using replica exchange molecular dynamics simulations with an implicit solvent model and different well-established force fields. We performed simulations for all four histone tails, H4, H3, H2A, and H2B, isolated and with inclusion of the nucleosome. The results confirm predictions of previous theoretical studies for the secondary structure of the isolated tails but show a strong dependence on the force field used. In the presence of the entire nucleosome for all force fields, the secondary structure of the histone tails is destabilized. Specific contacts are found between charged lysine and arginine residues and DNA phosphate groups and other binding sites in the minor and major DNA grooves. Using cluster analysis, we found a single dominant configuration of binding to DNA for the H4 and H2A histone tails, whereas H3 and H2B show multiple binding configurations with an equal probability. The leading stabilizing contribution for those binding configurations is the attractive interaction between the positively charged lysine and arginine residues and the negatively charged phosphate groups, and thus the resulting charge neutralization. Finally, we present results of molecular dynamics simulations in explicit solvent to confirm our conclusions. Results from both implicit and explicit solvent models show that large portions of the histone tails are not bound to DNA, supporting the complex role of these tails in gene transcription and expression and making them possible candidates for binding sites of transcription factors, enzymes, and other proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Histone Tails in Structural Stability of the Nucleosome

Histone tails play an important role in nucleosome structure and dynamics. Here we investigate the effect of truncation of histone tails H3, H4, H2A and H2B on nucleosome structure with 100 ns all-atom molecular dynamics simulations. Tail domains of H3 and H2B show propensity of α-helics formation during the intact nucleosome simulation. On truncation of H4 or H2B tails no structural change occ...

متن کامل

Influence of DNA topology and histone tails in nucleosome organization on pBR322 DNA.

Recently, we have found that the assembly of nucleosomes reconstituted on negatively supercoiled DNA is cooperative. In the present paper the role of DNA topology and of histone tails in nucleosome assembly was explored. Reconstituted minichromosomes on relaxed DNA at different histone/DNA ratios (R) were assayed by topological analysis and electron microscopy visualization. Both methods show a...

متن کامل

How does the histone code work?1

Patterns of histone post-translational modifications correlate with distinct chromosomal states that regulate access to DNA, leading to the histone-code hypothesis. However, it is not clear how modification of flexible histone tails leads to changes in nucleosome dynamics and, thus, chromatin structure. The recent discovery that, like the flexible histone tails, the structured globular domain o...

متن کامل

Multiscale modeling of nucleosome dynamics.

Nucleosomes form the fundamental building blocks of chromatin. Subtle modifications of the constituent histone tails mediate chromatin stability and regulate gene expression. For this reason, it is important to understand structural dynamics of nucleosomes at atomic levels. We report a novel multiscale model of the fundamental chromatin unit, a nucleosome, using a simplified model for rapid dis...

متن کامل

Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF.

Nucleosome Remodeling Factor (NURF) is an ATP-dependent nucleosome remodeling complex that alters chromatin structure by catalyzing nucleosome sliding, thereby exposing DNA sequences previously associated with nucleosomes. We systematically studied how the unstructured N-terminal residues of core histones (the N-terminal histone tails) influence nucleosome sliding. We used bacterially expressed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 107 12  شماره 

صفحات  -

تاریخ انتشار 2014